
SPATIAL DATA MODELS IN CURRENT 
COMMERCIAL RDBMS

Matthew McGranaghan

Associate Professor
University of Hawaii

Geography Department
2424 Maile Way

Honolulu, HI 96822 USA
matt@hawaii.edu

ABSTRACT
Vendors of database software are adding spatial capabilities to their 

products. This paper compares the spatial data types and the spatial relations 
which are recognized by a set of current commercial RDBMS and layered spatial 
database management packages. While there is convergence on the notion that 
databases should handle spatial information, there are both gross and subtle 
differences in what this means. A range of types, relations, capability, and ease 
of use is evident.

INTRODUCTION
Developments in database technology enable change in the practice of 

automated cartography and GIS, but impose limits through the data models they 
support. This paper describes the spatial data models that several current 
vendors of extended relational database management systems implement. It 
compares the richness of the data types, relations, and operators that each of the 
several vendors now offer. Minimally, these need to support an applications 
needs. More ambitiously, they might be hoped to support interoperability of 
heterogeneous spatial databases. However, the range of differences, both in 
substance and in nomenclature may inhibit this.

The relational model (Codd 1970) and relational databases have proven 
extremely useful for many applications, but, only a few years ago, many in GIS 
thought that spatial data were poor candidates for processing in relational 
database management systems (RDBMS). More recently, it has become apparent 
that extensible relational and object-oriented databases can meld spatial and 
mainstream databases (Strickland 1994, Abel 1996). van Oosterom (1993)

136



describes three approaches to incorporating spatial data in a relational database. 
He refers to them as dual architecture, layered architecture, and integrated 
architecture. We will not consider dual architecture further.

The layered architecture approach provides a layer of abstraction, in 
practice a set of relational tables containing the spatial information, between the 
user and the kernel of a standard RDBMS, which allows the user to think in 
terms of a spatial model but then translates this into data types which are native 
to the RDBMS. van Oosterom cites System 9, GEOVIEW, and CSIRO-DBMS 
(Abel 1989) as examples. ESRI's SDE is another.

An integrated architecture is one in which the types of data in the database 
are extended to include spatial data types, van Oosterom sites Intergraph's 
TIGRIS, and several research systems, including his own GEO++ (van Oosterom 
and Vijlgrief 1991), based on Stonebraker's Postgress. Strickland (1994) 
suggests that this ability to extend the relational model has allowed it to subsume 
object-oriented database functions, and the resulting object-relational model of 
extended RDBMS seems poised to carry the current vendors forward.

Mainstream commercial RDBMS vendors have also begun to offer spatial 
data handling capabilities. However, the claim to have "spatial capabilities" is 
vague. Vendors have taken different approaches, developing different data types 
and recognizing different relationships among spatial entities in these extended 
models. This paper is an attempt to make apimafacia comparison of the spatial 
data models, spatial operators, and richness of the application programmer's 
interface (API) provided in each of the major RDBMS 1 current release, based on 
sales literature, product documentation, published descriptions, and inquiry. It 
does not reflect hands-on experience or experimentation with the software. It 
certainly may reflect misconceptions that more familiarity would correct. The 
objective is to illuminate differences and similarities among the systems' spatial 
capabilities. System administration, management, and security issues are 
ignored.

DESCRIPTIONS
The following sections describe the objects, relations, and functions in each 

product. The descriptions are grouped by system architecture.

Layered Architecture Systems
Some information was available regarding Sybase Spatial Query Server, 

ESRI's SDE, and CSIRO-SDM (following SIRO-DBMS), all of which use a 
layered architecture.

SIRO-DBMS (Abel 1989), implements spatial objects and an extended SQL 
interface that recognizes spatial relations among them. This tool-box is built as a 
lean layer upon which developers can build custom systems. The data model is 
very similar to the U.S. Spatial Data Transfer Standard (SDTS) data model. It 
includes: point, rectangle, simple line segment, line string, link, directed link, 
chain, complete chain, area chain, network chain, ring, and both simple and

137



complex polygon types). Topology is carried in relations of entities and 
components. Points can be represented in relational tables. More complex 
features can be built up from them, or have coordinates represented directly in 
BLOB fields. It implements eight spatial operators as database search qualifiers: 
mbrint, intersects, encloses, is_enclosed_by, crosses, is_connected_to, 
within_buffer, and adjacent_to. Both the spatial model and operations are very 
well chosen for GIS applications. They are accessed via a C API of 
approximately two dozen functions. Quadtree-based spatial indexing is used to 
enhance performance, and comparisons with Oracle's OMD indicate that SDM is 
faster (Zhou 1995).

Sybase has spatial facilities through Spatial Query Server, a product from 
Vision International, a division of Autometric Inc. The Spatial Query Server 
(SQS) supports the definition of spatial data types spatial operators, and a spatial 
indexing schema, within a Sybase SQL Server. The eleven supported Spatial 
Data Types (SDT) are: point, rectangle, circle, ellipse, azimuth, line, polygon 
gpolygon (polygons nested within another polygon), voxel, polygon_set, and 
rectangle_set. The spatial qualifier operators are: intersect, inside, outside, 
beyond, and within. Spatial queries are processed against templates defining a 
geometric shape (i.e., rectangle, ellipse, circle, point, line, polygon, or 
gpolygon). A spatial index may be declared on a column of an SQS data type.

ESRI's Spatial Data Engine (SDE) sits atop an Oracle (or other) RDBMS 
but builds its own spatial layer eschewing Oracle's spatial data facilities. 
Reputedly, for better performance. SDE's spatial types include: point, point- 
cluster, spaghetti line, non-self-crossing line string, ring, polygon, and donut 
polygon. Polygon nesting beyond a "doughnut hole" requires the definition of 
separate (perhaps also "doughnut") polygons on down to the least enclosed 
polygon. Spatial indexing is through a three-tiered partition of the user 
coordinate system set up at the time of database creation. The API consists of 
138 functions to enter, manage, edit, query, and annotate spatial and related 
attribute data. The SE_RELATION() function generates a bit-mask indicating 
which of the following eight spatial relations hold among two objects (line 
intersection, point in common, common boundary in same order, common 
boundary in reversed order, spatially identical features, area intersect (at least 
one feature is an area and the other is at least partially inside it), primary feature 
contained by secondary feature, and secondary feature contained by the primary 
feature).

Integrated Architecture Systems
Oracle's Spatial Data Option, CA-Openlngress' Object Management 

Extension (OME) and Spatial Object Library (SOL), and Informix's Illustra 2D 
and 3D Spatial DataBlades are examples of commercial integrated architecture 
spatial relational databases. Some information was available for each of these.

Oracle's Spatial Data Option (formerly Oracle? MultiDimension) claims 
support for three types of objects (point, line, polygon) and three spatial relations 
in promotional literature but the reference manual describes a more complex two

138



tiered system of access. First, bins of data on retrieved based on five relations 
(enclose, enclosed-by, overlap, equal_to, outside) between bins and three types 
of query window (range, proximity, and polygon). Second, data points stand in 
one of three relations (inside, outside, on_the_border) of the query window, 
while line segments can also overlap the query window (Oracle 1996).

Oracle's basic spatial model is that of a point in an up-to-32-dimensional 
space. The HHCODE represents a linearly-indexed bounded cell in the multi 
dimensional data space. The range query retrieves HHCODES falling in an n- 
dimensional minimum bounding rectangle. The proximity query returns 
HHCODES within a radius of a point, with the assumption that each dimension 
is scaled the same. While one suspects what the polygon query should return, it 
is not really clear. The opaqueness of "a polygon window is defined by 
specifying a start and end point for each node, in two dimensions, up to a 
maximum of 124 nodes" (Oracle 1996, p. 3-7) is daunting. Predictably, the API 
is more database- than space-oriented.

CA-Openlngress with the Object Management Extension (OME) and 
Spatial Object Library (SOL) implements geographic data types and geometric 
SQL functions. SOL comes from a partnership with Mosaix Technologies Ltd, 
and "provides a rich set of library elements for application development. Data 
involving spatial relationships can be handled by the database in the same 
manner as the more traditional data types of characters and numbers. Using these 
spatial shapes and functions, location data can be integrated easily into business 
applications." Details on the relations and entities, however, are not provided in 
the literature that has been examined to date.

Illustra Information Technologies Inc. (since December 1995 a subsidiary 
of Informix Software Inc.) calls its Illustra Server a "dynamic content 
management system". The 2D Spatial DataBlade Module supports ten spatial 
types: circle, directed graph, ellipse, line segment, path, point, polygon, polygon 
set, quadrangle, and square/rectangle (Informix 1994, p. 2-1). Coordinates are 
double precision. (Paths are allowed to be self-crossing. Polygon sets allow 
nested and disjoint polygons via explicit parent-child enclosure declarations.) 
Four functions (insert, update, copy, and micopy) convert external (string) 
representations to internal C structure representations. The select function 
returns a string representations of objects. While promotional literature 
indicates that 2D Spatial DataBlade provides "over 200 functions" to create, 
compare, manipulate, and query spatial objects, this count is generated by 
overloading fifty-seven operators to handle multiple object-types as function 
arguments. For instance, the Boolean operator overlap, can be called to 
compare objects of any type(s). The operators return the range of standard as 
well as spatial data types.

The 3D Spatial DataBlade Module has eighteen 3D data types, (including 
point, box3d, quadrangle, circle, ellipse, line segment, path, polygon, polygon 
set, vector, unit vector, circular arc, rectangle, polyline/polyarc, polycurve, 
polygon mesh, polygon surface, and polyface mesh). While promotional 
materials claim "over 1,000" functions, these are in fact arranged as sixty-four

139



overloaded function calls. Key relations (location, distance, overlap) are 
incorporated in the database and accessible via SQL and a C programming API. 
R-TREE spatial indexing is used as are "smart objects" in which the system 
decides whether to store coordinates for small objects in a relation or as a "large 
object".

COMPARISON
The following table summarizes the counts of data types and spatial 

relations described above, attempting to penetrate marketing rhetoric. It appears 
that the number of spatial data types ranges from 2 up to 18. This would seem to 
reflect an ultimate foundation of point-based vector representation, coupled with 
some differences in the level of abstraction and integration with which the 
system is designed to work. The number of relations among objects in the data 
base appears to range between 3 and 8 (or ?). There is much more variation in 
the API sizes, which range from on the order of three up to 138. This range 
reflects more the intended uses of products and the number of spatial relations 
recognized in queries, and the number of functions in the application 
programmers interface (API) as indicators of richness or expressiveness of the 
representation and the system. The size of the API may also indicate how 
complex it is to use. The table shows that there are differences, but masks what 
they are.

System
Sybase SQS
ESRI SDE
SIRO-DBMS
Oracle SDO
CA SOL
Informix 2D SDB
Informix 3D SDB

Data Types
11
7
12
2
?
10
18

Relations
5
8
8
3
9

4
4

API size
9

138
-30

3
9

57
64

The following sections attempt to more precisely compare the features of 
these systems. The effort is made more difficult by differences in nomenclature 
and the amounts of information that were available for each system.

Data Types
The following table indicates, for comparison, the spatial data types in each 

system. It raises several difficulties with the information available from vendors. 
These include differences in nomenclature, such as differentiating among several 
meanings of "complex polygon", and differences in levels of generality. For 
instance, identifying a "quadrilateral", or for that matter a "rectangle" type in 
addition to the more general "polygon" in literature describing a system, without 
also indicating how and whether there really is specialization, obfuscates rather 
than clarifies system capabilities — one might as usefully list pentagons,

140



hexagons, etc. as types. Because of the limited treatment of 3D data in most of 
these systems, and for the sake of brevity, the table leaves out many of the 3D 
types in 3D Spatial DataBlade. Exclusion of a type from this list does not mean 
that it can not be implemented in a given system, only that it is not mentioned as 
a type in the system's data model. In any event, entries in the table are my best 
guess at native types from the information I have available.
Types

Point
Point Cluster
Line Segment
polyline
Ring
Topological Arc
Simple Polygon
Complex Polygon
Donut Polygon
Nested Polygon
Circle
Ellipse
Rectangle
Rectangle Set
Quadrilateral
Graph Network
Layer
Azimuth
Voxel

SQS

Y
N
N
N
N
N
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
Y
Y

SIRO- 
DBMS

Y
N
Y
Y
Y
Y
Y
N
Y
N
N
N
Y
N
N
N
N
N
N

SDE

Y
Y
Y
N
N
N
Y
N
Y
N
N
N
Y
N
N
Y
Y
N
N

SDO

Y
N
Y
Y
Y
N
Y
N
N
N
Y
N
N
N
N
N
N
N
N

2D- 
SDB

Y
N
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
N
Y
N

3D- 
SDB

Y
N
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
N
N
N
Y
Y
Y

Only SIRO-DBMS seems to consciously support the topological arc notion 
that is at the core of the US spatial data infrastructure. It is not clear whether this 
signals anything. Perhaps it signals a general pulling back from data models that 
have supported much analytic cartography and GIS. Perhaps it signals 
realization that similar information can be recovered in reasonable time from 
other types. Or perhaps it signals unfamiliarity with existing spatial data 
processing techniques and / or a continuing model of separation of database from 
spatial data processing.

Relations
Comparing these systems on the relations that they understand also proved 

elusive. All of the systems provide some ability to extract data based on spatial 
relations, essentially allowing spatial relations among objects to become part of 
the qualifying predicate in a database selection operation.

The table below indicates the relations that each system recognizes. It 
appears that these systems are very well matched in this regard, however, from 
the system documentation, one once again gets the sense that there are

141



differences in meaning among interpretation of these concepts. One difference is 
in the types of data returned by queries on a given relation.

Operation

MBR Intersect
Object Intersect
Enclosure
Proximity/Buffer
Contiguity
Spatial Equality
Exclosure

SQS

N
Y
Y
N
N
N
Y

SIRO- 
DBMS

Y
Y
Y
Y
Y
N
N

SDE

N
Y
Y
N
Y
Y
N

SDO

N
Y
Y
N
N
N
Y

2D-SDB

N
Y
Y
N
N
Y
N

3D-SDB

N
Y
Y
N
N
Y
N

The APIs and Operations
Comparing the number of operations that each system can perform on data 

to produce new information reveals a bit about system orientation. Several of the 
systems allow what one might consider more traditional GIS, or other 
application, capabilities than simple data retrieval so that in addition to treating 
relations as spatial qualifiers on retrieval, they can also return newly computed 
spatial objects or measurements that result from performing a spatial operation 
on qualifying objects. This capability makes a system seem more like a GIS 
programming environment than a database interface, and indicates further 
migration from a dual model of separating spatial and attribute data. Drawing a 
distinction between what is retrieval and what requires computation of new 
spatial objects or information in not easy. The following table attempts to 
characterize each system by the number of functions it offers, in categories 
structured after Roger Tomlinson's list of seventy-two GIS functions.

Function Class

Input, Edit,
Convert
Overlay
Buffer/Corridor
Display
Elevation
modeling
Other

SQS

7

7
7
7
7

7

SIRO- 
DBMS

1

1
1
0
0

7

SDE

2

3
1
0
0

14

SDO

0

1
0
0
0

5

2D-SDB

2

3
0
0
0

14

3D-SDB

2

3
0
0
3

13

From this point of view, SDE is very GIS-like at the outset and the 2D and 
3D Spatial DataB lades have considerable analytic geometric capability. Oracle 
SDO and SIRO-DBMS both seem more oriented toward accessing data for use 
by an application program.

142



CONCLUSIONS
From the comparison, a few general conclusions can be drawn. Vendors 

have recognized that spatial data are worth supporting, and their attention to this 
is paves the way for more GIS and cartographic use of RDBMS. Data access 
will be increasingly easy for even very large databases.

The distinction between GIS and database software is blurred by the spatial 
capabilities of current RDBMS. These range from bare data item retrieval to 
fairly full analytic geometric manipulation of spatial data. Products with large 
libraries seem to provide many GIS facilities. Expansion in this direction seems 
likely. It is not yet clear what this will mean for GIS development. The potential 
for GIS to be subsumed within database technology in the not too distant future 
seems real, but systems to date lack much in the way of data input and spatial co- 
registration.

The ranges of variation among the data types and operations are noteworthy. 
While progress has been made toward standardization in the spatial data 
community, and there is considerable convergence among the models in these 
systems, the differences are impediments to adoption and to interoperability. It is 
not yet clear which of these sets of spatial types and relations will prove to be 
"most adequate". Public benchmarks showing performance on a suite of 
common GIS tasks under each data model would be interesting. So would 
demonstrations of the effort required to move between these data models.

The problems in trying to make information about these systems 
commensurate, and the concomitant limitations of the present paper should be 
recognized. Differences in nomenclature and nuance make description-based 
comparison suspect. This work was conducted without side-by-side access to 
test these products experimentally. Additionally, firms have considerable 
financial interest in the reputations of their products, and some consider detailed 
descriptions of their capabilities to be proprietary information. The cooperation 
of several firms in providing demonstrations and brief access, or even simply 
being willing to sell documentation beyond sales literature to non-licensees of 
their software is appreciated.

REFERENCES
Abel, DJ. (1989) SIRO-DBMS: a Database Tool Kit for Geographical

Information Systems. International Journal of Geographical
Information Systems, v3, n2, p!03-116, 1989. 

Abel, DJ. (1996) What's Special about Spatial?, Proceedings of the 7th
Australasian Database Conference, Melbourne, Australia, January 29-
30, 1996. 

CA-Openlngres, Object Management Extension (OME) and Spatial Object
Library (SOL) sales literature.

143



Codd, E. (1970) A Relational Model for Large Shared Data Banks.
Communications of the Association for Computing Machinery, v 13, n
6, p 377-387. 

Informix (1994) Illustra 2D Spatial DataBlade Guide (Release 1.3), Illustra
Information Technologies, Inc., Oakland CA, October 1994. 

Informix (1994) Illustra 3D Spatial DataBlade Guide (Release 1.2), Illustra
Information Technologies, Inc., Oakland CA, October 1994. 

Milne, P., S. Milton, and J.L. Smith (1993) Geographical object-oriented
databases — a case study. International Journal of Geographical
Information Systems, v. 7, n. 1, p. 39-55 

Oracle (1996) Oracle? Spatial Data Option Reference and Administrator's
Guide (Version 7.3.2), Oracle Corporation, Redwood City, CA, April
1996. 

ESRI (1995) SDE The Spatial Data Engine User's Guide, version 2.0.
Environmental Systems Research Institute, Redlands, CA. 

Strickland, T.M. (1994) Intersection of Relational and Object, AM/FM
International Proceedings, p. 69-75. 

van Oosterom, P.J.M. (1993) Reactive Data Structures for Geographic
Information Systems. Oxford University Press, New York. 

Viljlbrief, T. and P van Oosterom, The GEO++ System: an Extensible GIS,
Proceedings Fifth International Symposium on Spatial Data Handling,
p40-50, Charleston, South Carolina, August 1992. 

Zhou, X. (1995) A Comparison of Oracle? MultiDimension and ARC SDM for
Point Data Retrieval.

144




